Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep.
نویسندگان
چکیده
Considerable evidence suggests that brain stem pedunculopontine tegmentum (PPT) cholinergic cells are critically involved in the normal regulation of wakefulness and rapid eye movement (REM) sleep. However, much of this evidence comes from indirect studies. Thus, although involvement of PPT cholinergic neurons has been suggested by numerous investigations, the excitation of PPT cholinergic neurons causal to the behavioral state of wakefulness and REM sleep has never been directly demonstrated. In the present study we examined the effects of three different levels of activation of PPT cholinergic cells in wakefulness and sleep behavior. The effects of glutamate on the activity of PPT cholinergic cells were studied by microinjection of one of the three different doses of L-glutamate (0.3, 1.0, and 3.0 microg) or saline (vehicle control) into the PPT cholinergic cell compartment while quantifying the effects on wakefulness and sleep in free moving chronically instrumented cats. All microinjections were made during wakefulness and were followed by 4 h of recording. Polygraphic records were scored for wakefulness, slow-wave sleep states 1 and 2, slow-wave sleep with pontogeniculooccipital waves, and REM sleep. Dependent variables quantified after each microinjection included the percentage of recording time spent in each state, the latency to onset of REM sleep, the number of episodes per hour for REM sleep, and the duration of each REM sleep episode. A total of 48 microinjections was made into 12 PPT sites in six cats. Microinjection of 0.3- and 1.0-microg doses of L-glutamate into the cholinergic cell compartment of the PPT increased the total amount of REM sleep in a dose-dependent manner. Both doses of L-glutamate increased REM sleep at the expense of slow-wave sleep but not wakefulness. Microinjection of 3.0 microg L-glutamate kept animals awake for 2-3 h by eliminating slow-wave and REM sleep. The results show that the microinjection of the excitatory amino acid L-glutamate into the PPT cholinergic cell compartments can increase wakefulness and/or REM sleep depending on the L-glutamate dosage. These findings unambiguously confirm the hypothesis that the excitation of the PPT cholinergic cells is causal to the generation of wakefulness and REM sleep.
منابع مشابه
Microinjection of glutamate into the pedunculopontine tegmentum induces REM sleep and wakefulness in the rat.
The aim of this study was to test the hypothesis that the cells in the brain stem pedunculopontine tegmentum (PPT) are critically involved in the normal regulation of wakefulness and rapid eye movement (REM) sleep. To test this hypothesis, one of four different doses of the excitatory amino acid L-glutamate (15, 30, 60, and 90 ng) or saline (control vehicle) was microinjected unilaterally into ...
متن کاملNeural mechanism of rapid eye movement sleep generation with reference to REM-OFF neurons in locus coeruleus.
The noradrenergic (NA-ergic) rapid eye movement (REM)-OFF neurons in locus coeruleus (LC) and cholinergic REM-ON neurons in laterodorsal/pedunculopontine tegmentum show a reciprocal firing pattern. The REM-ON neurons fire during REM sleep whereas REM-OFF neurons stop firing during REM sleep. The cessation of firing of REM-OFF neurons is a pre-requisite for the generation of REM sleep and non-ce...
متن کاملEvidence that REM sleep is controlled by the activation of brain stem pedunculopontine tegmental kainate receptor.
Glutamate, the neurotransmitter, enhances rapid-eye-movement (REM) sleep when microinjected into the brain stem pedunculopontine tegmentum (PPT) of the cat and rat. Glutamate and its various receptors are normally present in the PPT cholinergic cell compartment. The aim of this study was to identify which specific receptor(s) in the cholinergic cell compartment of the PPT are involved in glutam...
متن کاملBehavioral state control through differential serotonergic inhibition in the mesopontine cholinergic nuclei: a simultaneous unit recording and microdialysis study.
Cholinergic neurons of the mesopontine nuclei are strongly implicated in behavioral state regulation. One population of neurons in the cholinergic zone of the laterodorsal tegmentum and the pedunculopontine nuclei, referred to as rapid eye movement (REM)-on neurons, shows preferential discharge activity during REM sleep, and extensive data indicate a key role in production of this state. Anothe...
متن کاملOptogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep.
Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 77 6 شماره
صفحات -
تاریخ انتشار 1997